z-logo
open-access-imgOpen Access
Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase.
Author(s) -
Jing Mu,
Hae Sang Lee,
Tehhui Kao
Publication year - 1994
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.6.5.709
Subject(s) - biology , protein kinase domain , kinase , pollen , microbiology and biotechnology , sh3 domain , receptor tyrosine kinase , biochemistry , gene , botany , mutant
From a pollen tube cDNA library of Petunia inflata, we isolated clones encoding a protein with structural features and biochemical properties characteristic of receptor-like kinases. It was designated PRK1 for pollen receptor-like kinase 1. The cytoplasmic domain of PRK1 is highly similar to the kinase domains of other plant receptor-like kinases and contains nearly all of the conserved amino acids for serine/threonine kinases. The extracellular domain of PRK1 contains leucine-rich repeats as found in some other plant receptor-like kinases, but overall its sequence in this region does not share significant similarity. Characterization of a gene encoding PRK1 revealed the presence of two introns. During pollen development, PRK1 mRNA was first detected in anthers containing mostly binucleate microspores; it reached the highest level of mature pollen and remained at a high level in in vitro-germinated pollen tubes. The recombinant cytoplasmic domain of PRK1 autophosphorylated on serine and tyrosine, suggesting that PRK1 may be a dual-specificity kinase. Monospecific immune serum to the recombinant extracellular domain of PRK1 detected a 69-kD protein in microsomal membranes of pollen and pollen tubes. The characteristics of PRK1 suggest that it may play a role in signal transduction events during pollen development and/or pollination.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom