z-logo
open-access-imgOpen Access
A Seed Shape Mutant of Arabidopsis That Is Affected in Integument Development.
Author(s) -
Karen M. LéonKloosterziel,
C.J. Keijzer,
Maarten Koornneef
Publication year - 1994
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.6.3.385
Subject(s) - ovule , biology , mutant , arabidopsis , germination , botany , dormancy , integument , phenotype , population , seed dormancy , ethyl methanesulfonate , genetic analysis , mutation , genetics , gene , embryo , demography , sociology
A seed shape mutant of Arabidopsis was isolated from an ethyl methanesulfonate-treated population. Genetic analysis revealed that the heart-shaped phenotype was maternally inherited, showing that this is a testa mutant. This indicated the importance of the testa for the determination of the seed shape. This recessive aberrant testa shape (ats) gene was located at position 59.0 on chromosome 5. A comparison was made between ovules and developing and mature seeds of the wild type and of the mutant using light and scanning electron microscopy. We showed that the mutant seed shape is determined during the first few days after fertilization, when the embryo occupies only a very small part of the seed. The integuments of ats ovules consisted of only three rather than five cell layers. In double mutants, the effect of ats was additive to other testa mutations, such as transparent testa, glabra (ttg), glabrous2 (gl2), and apetala2 (ap2). The ats mutation resulted in a reduced dormancy, which was maternally inherited. This effect of a testa mutation on germination was also seen in ttg seeds, in which the outer layer of the testa was disturbed. This indicated the importance of the testa as a factor in determining dormancy in Arabidopsis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom