z-logo
open-access-imgOpen Access
Alanine scanning mutagenesis of a plant virus movement protein identifies three functional domains.
Author(s) -
D. Giesman-Cookmeyer,
Steven A. Lommel
Publication year - 1993
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.5.8.973
Subject(s) - biology , alanine scanning , movement protein , plasmodesma , rna , microbiology and biotechnology , mutant , mutagenesis , rna binding protein , cell , ribonucleoprotein , alanine , genetics , amino acid , gene , coat protein
Alanine scanning mutagenesis was performed on the red clover necrotic mosaic virus (RCNMV) movement protein (MP), and 12 mutants were assayed in vitro for RNA binding characteristics and in vivo for their ability to potentiate RCNMV cell-to-cell movement. The mutant phenotypes that were identified in vitro and in vivo suggest both that cooperative RNA binding is not necessary for cell-to-cell movement in vivo and that only a fraction of the wild-type RNA binding may be required. The MP mutants defined at least three distinct functional regions in the MP: an RNA binding domain, a cooperative RNA binding domain, and a third domain that is necessary for cell-to-cell movement in vivo. This third domain may be required for targeting the MP to cell walls and plasmodesmata, interacting with host proteins, folding, or possibly binding RNA into a functional ribonucleoprotein complex capable of cell-to-cell movement.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom