z-logo
open-access-imgOpen Access
A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco.
Author(s) -
Michael H. Shintaku,
L. Zhang,
Peter Palukaitis
Publication year - 1992
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.4.7.751
Subject(s) - biology , cucumber mosaic virus , chlorosis , virology , rna , plant virus , complementary dna , virus , amino acid , gene , genetics , botany
Some strains of cucumber mosaic virus (CMV) induce a bright yellow/white chlorosis in tobacco instead of the light green/dark green mosaic induced by most CMV strains. This property is controlled by RNA 3 of this tripartite virus. Recombination between cDNA clones of RNA 3 from a green mosaic strain, Fny-CMV, and a chlorotic strain, M-CMV, and inoculation of infectious transcripts of the chimeric RNAs 3, together with RNAs 1 and 2 of Fny-CMV, localized the chlorosis induction domain to a region of the coat protein gene containing two nucleotide differences. Site-directed mutagenesis of one nucleotide to change the codon for Leu129 in the M-CMV coat protein to Pro129 of Fny-CMV changed the phenotype from chlorotic to green mosaic, whereas the opposite change in phenotype was observed when the Pro129 in the Fny-CMV coat protein was altered to Ser129. Thus, the local secondary structure surrounding amino acid 129 rather than a particular amino acid per se is involved in chlorosis induction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom