Heat Shock Gene Expression Is Controlled Primarily at the Translational Level in Carrot Cells and Somatic Embryos.
Author(s) -
Nestor R. Apuya,
J. Lynn Zimmerman
Publication year - 1992
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.4.6.657
Subject(s) - biology , embryo , polysome , somatic cell , callus , heat shock protein , microbiology and biotechnology , heat shock , messenger rna , shock (circulatory) , gene , genetics , ribosome , rna , medicine
We have determined that the synthesis of heat shock proteins is regulated ultimately at the translational level in heat-shocked carrot callus cells and somatic embryos. Polysome analysis revealed that heat-shocked callus cells do not translate most heat shock transcripts, which they abundantly synthesize and accumulate. By contrast, heat-shocked globular embryos accumulate low levels of heat shock mRNA but selectively translate more of the heat shock mRNA molecules compared to callus cells and embryos of later stages. The overall result of these different translational control schemes is that undifferentiated callus cells and globular embryos synthesize comparable levels of heat shock proteins even though they have large differences in heat shock transcript levels.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom