z-logo
open-access-imgOpen Access
A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants.
Author(s) -
C Johns,
M Lu,
Anna Lyznik,
Sally A. Mackenzie
Publication year - 1992
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.4.4.435
Subject(s) - biology , pollen , cytoplasmic male sterility , microspore , sterility , mitochondrial dna , genetics , meiosis , tapetum , gene , botany , stamen
Cytoplasmic male sterility (CMS) in common bean is associated with the presence of a 3-kb unique mitochondrial sequence designated pvs. The pvs sequence encodes at least two open reading frames (297 and 720 bp in length) with portions derived from the chloroplast genome. Fertility restoration by the nuclear restorer gene Fr results in the loss of this transcriptionally active unique region. We examined the effect of CMS (pvs present) and fertility restoration by Fr (pvs absent) on the pattern of pollen development in bean. In the CMS line, pollen aborted in the tetrad stage late in microgametogenesis. Microspores maintained cytoplasmic connections throughout pollen development, indicating aberrant or incomplete cytokinesis. Pollen-specific events associated with pollen abortion and fertility restoration imply that a gametophytic factor or event may be involved in CMS. In situ hybridization experiments suggested that significant reduction or complete loss of the mitochondrial sterility-associated sequence occurred in fertile pollen of F2 populations segregating for fertility. These observations support a model of fertility restoration by the loss of a mitochondrial DNA sequence prior to or during microsporogenesis/gametogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom