Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein.
Author(s) -
James C. Carrington,
D D Freed,
Andrew J. Leinicke
Publication year - 1991
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.3.9.953
Subject(s) - biology , nuclear localization sequence , nuclear transport , subcellular localization , fusion protein , signal peptide , microbiology and biotechnology , chromosomal translocation , transgene , transfection , nuclear export signal , cauliflower mosaic virus , cell nucleus , peptide sequence , nucleus , cytoplasm , biochemistry , recombinant dna , gene , genetically modified crops
The NIa protein of certain plant potyviruses localizes to the nucleus of infected cells. Previous studies have shown that linkage of NIa to reporter protein beta-glucuronidase (GUS) is sufficient to direct GUS to the nucleus in transfected protoplasts and in cells of transgenic plants. In this study, we mapped sequences in NIa that confer karyophilic properties. A quantitative transport assay using transfected protoplasts, as well as in situ localization technique using epidermal cells from transgenic plants, were employed. Two domains within NIa, one between amino acid residues 1 to 11 (signal domain I) and the other between residues 43 to 72 (signal domain II), were found to function additively for efficient localization of fusion proteins to the nucleus, although either region independently could facilitate a low level of translocation. Like signals from animal cells, both nuclear transport domains of NIa contain a high concentration of basic (arginine and lysine) residues. Nuclear transport signal domain II overlaps or is very near Tyr62, which is the residue that mediates covalent attachment of a subset of NIa molecules to the 5' terminus of viral RNA within infected cells. The nature of the NIa nuclear transport signal and the possibility for regulation of NIa translocation are discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom