Evidence for G-Protein Regulation of Inward K+ Channel Current in Guard Cells of Fava Bean.
Author(s) -
Katrina Fairley-Grenot,
Sarah M. Assmann
Publication year - 1991
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.3.9.1037
Subject(s) - guard cell , biology , biophysics , g protein , ion channel , extracellular , bapta , cholera toxin , gtp' , microbiology and biotechnology , biochemistry , signal transduction , receptor , endocrinology , enzyme
Recent reports have shown that GTP-binding proteins (G-proteins) are present in plants but have given limited indication as to their site of action. G-proteins in animal cells transduce extracellular signals into intracellular or membrane-mediated events, including the regulation of ion channels. Using whole-cell patch clamp, we provide evidence that a G-protein in guard cells of fava bean regulates the magnitude (and not the kinetics) of inward current through K+-selective ion channels in the plasma membrane. GDP[beta]S (100 to 500 [mu]M) increases inward K+ current, whereas GTP[gamma]S (500 [mu]M) has the opposite effect. The control nucleotides ADP[beta]S and ATP[gamma]S (500 [mu]M) do not affect K+ current. Reduction of inward current by GTP[gamma]S is eliminated in the presence of the Ca2+ chelator, BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N[prime],N[prime],-tetraacetic acid) (5 mM). When applied intracellularly, the G-protein regulators, cholera toxin and pertussis toxin, both decrease inward K+ current. The entry of K+ (and anions) into guard cells increases their turgor, opening stomatal pores in the leaf epidermis that allow gas exchange with the environment. Our data suggest the involvement of a G-protein in the inhibition of K+ uptake and stomatal opening. Changes in stomatal aperture, vital to both photosynthesis and plant water status, reflect guard-cell responsiveness to a variety of known environmental signals. The results presented here indicate that, in plants as well as animals, ion channel regulation by environmental stimuli may be mediated by G-proteins.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom