The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei.
Author(s) -
Alexander R. van der Krol,
N H Chua
Publication year - 1991
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.3.7.667
Subject(s) - biology , nuclear transport , nuclear localization sequence , nls , nuclear protein , nuclear export signal , importin , microbiology and biotechnology , biochemistry , genetics , cell nucleus , nucleus , transcription factor , gene
The import of large molecules into the nucleus is an active process that requires the presence in cis of a nuclear localization signal (NLS). Although these signals have been well characterized in mammalian, yeast, and amphibian nuclear proteins, no plant NLS has yet been described. The NLSs identified so far generally contain clusters of basic amino acids. This characteristic feature prompted us to test several basic domains from the plant DNA-binding proteins TGA-1A and TGA-1B and the TATA box-binding protein TFIID for nuclear targeting function. When tested as N-terminal fusions to the beta-glucuronidase protein, only those constructs containing the DNA binding (basic) domain of the basic-zipper (B-ZIP) region of TGA-1A or TGA-1B conferred nuclear import. These results suggest a close association or overlap of the DNA binding and nuclear targeting domains of B-ZIP proteins. We also demonstrated that a wild-type but not a mutant simian virus 40 large T-antigen NLS facilitates import into plant nuclei, indicating a strong conservation between nuclear import mechanisms in animals and plants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom