z-logo
open-access-imgOpen Access
A parsley 4CL-1 promoter fragment specifies complex expression patterns in transgenic tobacco.
Author(s) -
Karl D. Hauffe,
Uta Paszkowski,
Paul SchulzeLefert,
Klaus Hahlbrock,
Jeffery L. Dangl,
Carl J. Douglas
Publication year - 1991
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.3.5.435
Subject(s) - biology , transgene , phenylpropanoid , gene , petunia , dna ligase , promoter , gene expression , nicotiana tabacum , genetically modified crops , arabidopsis , genetics , microbiology and biotechnology , biosynthesis , mutant
The 4CL-1 gene is one of two highly homologous parsley genes encoding 4-coumarate:coenzyme A ligase, a key enzyme of general phenylpropanoid metabolism. Expression of these genes is essential for the biosynthesis of both defense-related and developmentally required phenylpropanoid derivatives. We examined the developmental regulation of the 4CL-1 promoter by analyzing the expression of 4CL-1-beta-glucuronidase fusions in transgenic tobacco plants. A 597-base pair 4CL-1 promoter fragment specified histochemically detectable expression in a complex array of vegetative and floral tissues and cell types. The activity of a series of 5' deleted promoter fragments was analyzed in parsley protoplasts and transgenic tobacco plants. Deletions past -210 base pairs led to a drastic decline in beta-glucuronidase activity in protoplasts and loss of tissue-specific expression in transgenic tobacco. These results were put into the context of potential protein-DNA interactions by in vivo footprint analysis of the 4CL-1 promoter in parsley cells. Loss of promoter activity in parsley protoplasts and transgenic tobacco was correlated with the deletion or disruption of the distal portion of a large (100-base pair) footprinted region within the first 200 base pairs of the 4CL-1 promoter.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom