Role of Calcium in Signal Transduction of Commelina Guard Cells.
Author(s) -
Simon Gilroy,
Mark D. Fricker,
Nick D. Read,
Anthony Trewavas
Publication year - 1991
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.3.4.333
Subject(s) - guard cell , abscisic acid , cytosol , biology , extracellular , vacuole , signal transduction , microbiology and biotechnology , cytoplasm , second messenger system , biophysics , organelle , calcium , biochemistry , chemistry , enzyme , gene , organic chemistry
The role of cytosolic Ca2+ in signal transduction in stomatal guard cells of Commelina communis was investigated using fluorescence ratio imaging and photometry. By changing extracellular K+, extracellular Ca2+, or treatment with Br-A23187, substantive increases in cytosolic Ca2+ to over 1 micromolar accompanied stomatal closure. The increase in Ca2+ was highest in the cytoplasm around the vacuole and the nucleus. Similar increases were observed when the cells were pretreated with ethyleneglycol-bis-(o-aminoethyl)tetraacetic acid or the channel blocker La3+, together with the closing stimuli. This suggests that a second messenger system operates between the plasma membrane and Ca2+-sequestering organelle(s). The endogenous growth regulator abscisic acid elevated cytosolic Ca2+ levels in a minority of cells investigated, even though stomatal closure always occurred. Ca2+-dependent and Ca2+-independent transduction pathways linking abscisic acid perception to stomatal closure are thus indicated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom