Chloroplast RNA Stability in Chlamydomonas: Rapid Degradation of psbB and psbC Transcripts in Two Nuclear Mutants.
Author(s) -
Leslie Sieburth,
S.L. Berry-Lowe,
Gregory W. Schmidt
Publication year - 1991
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.3.2.175
Subject(s) - chlamydomonas reinhardtii , biology , chloroplast , mutant , chlamydomonas , microbiology and biotechnology , nuclear gene , gene , transcription (linguistics) , genome , genetics , linguistics , philosophy
Toward understanding regulation of chloroplast transcript abundance, we have isolated and analyzed nuclear mutant strains of Chlamydomonas reinhardtii that lack chloroplast-encoded mRNAs for photosystem II proteins. Mutant 6.2z5 accumulates no transcripts of the psbC locus for the 43-kilodalton chlorophyll-binding protein. In mutant GE2.10, transcripts of psbB, encoding the 47-kilodalton chlorophyll-binding protein, cannot be detected [Jensen, K.H., Herrin, D.L., Plumley, F.G., and Schmidt, G.W. (1986). J. Cell Biol. 103, 1315-1325]. Also, GE2.10 does not accumulate several low molecular weight transcripts from a region of the chloroplast genome proximal to psbB. The levels of mRNAs from other chloroplast genes are not affected in either mutant. Chloroplast transcription was analyzed in permeabilized cells and by in vivo pulse labeling. Although 5[prime] ribonuclease was found as an artifactual activity of permeabilized cells, the results from both assays demonstrated that wild-type levels of psbC transcription occur in mutant 6.2z5 and that chloroplasts of GE2.10 transcribe psbB and adjacent genes. Thus, it appears that the nuclear genes that are mutated in 6.2z5 and GE2.10 encode products that, respectively, confer stability to transcripts from the psbC and the psbB regions of the chloroplast genome.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom