Meta Gene Regulatory Networks in Maize Highlight Functionally Relevant Regulatory Interactions
Author(s) -
Peng Zhou,
Zhi Li,
Erika Magnusson,
Fabio Gómez-Cano,
Peter A. Crisp,
Jaclyn M Noshay,
Erich Grotewold,
Candice N. Hirsch,
Steven P. Briggs,
Nathan M. Springer
Publication year - 2020
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.20.00080
Subject(s) - biology , expression quantitative trait loci , gene regulatory network , computational biology , gene , quantitative trait locus , transcriptome , regulation of gene expression , gene expression , genetics , regulatory sequence , transcription factor , trait , genotype , single nucleotide polymorphism , computer science , programming language
The regulation of gene expression is central to many biological processes. Gene regulatory networks (GRNs) link transcription factors (TFs) to their target genes and represent maps of potential transcriptional regulation. Here, we analyzed a large number of publically available maize ( Zea mays ) transcriptome data sets including >6000 RNA sequencing samples to generate 45 coexpression-based GRNs that represent potential regulatory relationships between TFs and other genes in different populations of samples (cross-tissue, cross-genotype, and tissue-and-genotype samples). While these networks are all enriched for biologically relevant interactions, different networks capture distinct TF-target associations and biological processes. By examining the power of our coexpression-based GRNs to accurately predict covarying TF-target relationships in natural variation data sets, we found that presence/absence changes rather than quantitative changes in TF gene expression are more likely associated with changes in target gene expression. Integrating information from our TF-target predictions and previous expression quantitative trait loci (eQTL) mapping results provided support for 68 TFs underlying 74 previously identified trans -eQTL hotspots spanning a variety of metabolic pathways. This study highlights the utility of developing multiple GRNs within a species to detect putative regulators of important plant pathways and provides potential targets for breeding or biotechnological applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom