Spacing between GT-1 binding sites within a light-responsive element is critical for transcriptional activity.
Author(s) -
Philip M. Gilmartin,
NamHai Chua
Publication year - 1990
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.2.5.447
Subject(s) - biology , transcription (linguistics) , binding site , transcription factor , promoter , microbiology and biotechnology , dna binding protein , genetics , gene , biophysics , gene expression , philosophy , linguistics
Dissection of the light-responsive element (LRE) located between -166 and -50 of rbcS-3A from pea has revealed critical spacing requirements between the two GT-1 binding sites for light-responsive transcription. An increase in spacing between the two sites by as little as 2 bp reduces dramatically the rbcS-3A transcript levels in vivo. Mutation of the 10 bp between the binding sites leads to slightly lower transcript levels, as do deletions of either 3 bp or 8 bp. Deletions of 5 bp or 7 bp from between the GT-1 binding sites do not affect rbcS-3A transcript levels; however, a deletion of 10 bp virtually abolishes the activity of this element. These spacing changes within the light-responsive element similarly affect transcription of a divergently oriented and truncated nopaline synthase promoter. Most spacing changes between the two GT-1 binding sites, however, do not impair the binding of GT-1 to this element in vitro. Together with previous observations, these results suggest that the nuclear factor GT-1 may interact with the binding sites in either a productive or nonproductive manner and that GT-1 binding is necessary but not sufficient for light-responsive transcription. We also discuss our results in relation to the observed spacing of similar sequence elements present within other light-responsive promoters.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom