z-logo
open-access-imgOpen Access
Transcriptomics at Maize Embryo/Endosperm Interfaces Identifies a Transcriptionally Distinct Endosperm Subdomain Adjacent to the Embryo Scutellum
Author(s) -
Nicolas M. Doll,
Jérémy Just,
Véronique Brunaud,
José Caïus,
Aurélie Grimault,
Nathalie DepègeFargeix,
Eddi Esteban,
Asher Pasha,
Nicholas J. Provart,
Gwyneth Ingram,
Peter Rogowsky,
Thomas Widiez
Publication year - 2020
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.19.00756
Subject(s) - endosperm , scutellum , biology , embryo , transcriptome , microbiology and biotechnology , gene , genetics , botany , gene expression
Seeds are complex biological systems comprising three genetically distinct tissues nested one inside another (embryo, endosperm, and maternal tissues). However, the complexity of the kernel makes it difficult to understand intercompartment interactions without access to spatially accurate information. Here, we took advantage of the large size of the maize ( Zea mays ) kernel to characterize genome-wide expression profiles of tissues at different embryo/endosperm interfaces. Our analysis identifies specific transcriptomic signatures in two interface tissues compared with whole seed compartments: the scutellar aleurone layer and the newly named endosperm adjacent to scutellum (EAS). The EAS, which appears around 9 d after pollination and persists for around 11 d, is confined to one to three endosperm cell layers adjacent to the embryonic scutellum. Its transcriptome is enriched in genes encoding transporters. The absence of the embryo in an embryo specific mutant can alter the expression pattern of EAS marker genes. The detection of cell death in some EAS cells together with an accumulation of crushed cell walls suggests that the EAS is a dynamic zone from which cell layers in contact with the embryo are regularly eliminated and to which additional endosperm cells are recruited as the embryo grows.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom