z-logo
open-access-imgOpen Access
OsCASP1 is required for Casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements
Author(s) -
Zhigang Wang,
Naoki Yamaji,
Sheng Huang,
Zhang Xiang,
Mingxing Shi,
Shan Fu,
Guangzhe Yang,
Jian Feng,
Jixing Xia
Publication year - 2019
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.19.00296
Subject(s) - endodermis , chemistry , mutant , oryza sativa , botany , biophysics , shoot , biology , biochemistry , gene
In response to diverse environmental conditions, rice ( Oryza sativa ) roots have developed one Casparian strip (CS) at the exodermis and one CS at the endodermis. Here, we functionally characterized OsCASP1 (Casparian strip domain protein 1) in rice. OsCASP1 was mainly expressed in the root elongation zone, and the protein encoded was first localized to all sides of the plasma membrane of endodermal cells without CS, followed by the middle of the anticlinal side of endodermal cells with CS. Knockout of OsCASP1 resulted in a defect of CS formation at the endodermis and decreased growth under both soil and hydroponic conditions. Mineral analysis showed that the oscasp1 mutants accumulated more Ca, but less Mn, Zn, Fe, Cd, and As in the shoots compared with the wild type. The growth inhibition of the mutants was further aggravated by high Ca in growth medium. The polar localization of the Si transporter Low Si 1 at the distal side of the endodermis was not altered in the mutant, but the protein abundance was decreased, resulting in a substantial reduction in silicon uptake. These results indicated that OsCASP1 is required for CS formation at the endodermis and that the CS in rice plays an important role in root selective uptake of mineral elements, especially Ca and Si.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom