z-logo
open-access-imgOpen Access
A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance
Author(s) -
Yiming Wang,
Stefan Schuck,
Jingni Wu,
Ping Yang,
Anne-Christin Döring,
Jürgen Zeier,
Kenichi Tsuda
Publication year - 2018
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.18.00547
Subject(s) - pseudomonas syringae , arabidopsis , systemic acquired resistance , biology , arabidopsis thaliana , mutant , microbiology and biotechnology , transcription factor , mapk/erk pathway , kinase , gene , biochemistry
Plants induce systemic acquired resistance (SAR) upon localized exposure to pathogens. Pipecolic acid (Pip) production via AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) is key for SAR establishment. Here, we report a positive feedback loop important for SAR induction in Arabidopsis thaliana We showed that local activation of the MAP kinases MPK3 and MPK6 is sufficient to trigger Pip production and mount SAR. Consistent with this, mutations in MPK3 or MPK6 led to compromised Pip accumulation upon inoculation with the bacterial pathogen Pseudomonas syringae pv tomato DC3000 ( Pto ) AvrRpt2, which triggers strong sustained MAPK activation. By contrast, P. syringae pv maculicola and Pto , which induce transient MAPK activation, trigger Pip biosynthesis and SAR independently of MPK3/6. ALD1 expression, Pip accumulation, and SAR were compromised in mutants defective in the MPK3/6-regulated transcription factor WRKY33. Chromatin immunoprecipitation showed that WRKY33 binds to the ALD1 promoter. We found that Pip triggers activation of MPK3 and MPK6 and that MAPK activation after Pto AvrRpt2 inoculation is compromised in wrky33 and ald1 mutants. Collectively, our results reveal a positive regulatory loop consisting of MPK3/MPK6, WRKY33, ALD1, and Pip in SAR induction and suggest the existence of distinct SAR activation pathways that converge at the level of Pip biosynthesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom