z-logo
open-access-imgOpen Access
Targeted Histone Acetylation and Altered Nuclease Accessibility over Short Regions of the Pea Plastocyanin Gene
Author(s) -
Yii Leng Chua,
Anthony P. Brown,
John C. Gray
Publication year - 2001
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.13.3.599
Subject(s) - histone , micrococcal nuclease , biology , histone h4 , acetylation , chromatin , microbiology and biotechnology , chromatin immunoprecipitation , nuclease , nucleosome , enhancer , gene , promoter , biochemistry , gene expression
The chromatin structure of the pea plastocyanin gene (PetE) was examined at three different transcriptional states by investigating the acetylation states of histones H3 and H4 and the nuclease accessibility of the gene in pea roots, etiolated shoots, and green shoots. The acetylation states of histones associated with different regions of PetE were analyzed by chromatin immunoprecipitation with antibodies specific for acetylated or nonacetylated histone H3 or H4 tails, followed by polymerase chain reaction quantification. Comparison of pea tissues indicated that histone hyperacetylation was associated with increased PetE transcription in green shoots. Moreover, hyperacetylation of both histones H3 and H4 was targeted to the enhancer/promoter region in green shoots, suggesting that only specific nucleosomes along the gene were modified. Time-course digestions of nuclei with micrococcal nuclease and DNaseI indicated that the enhancer/promoter region was more resistant to digestion in the inactive gene in pea roots than was the same region in the active gene in shoots, whereas the transcribed region of PetE was digested similarly among the tissues. This finding indicates that transcription is accompanied by changes in the nuclease accessibility of the enhancer/promoter region only. Moreover, these results indicate that the changes in nuclease accessibility are organ specific, whereas histone hyperacetylation is light dependent, and they suggest that changes in nuclease accessibility precede histone hyperacetylation during PetE activation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom