z-logo
open-access-imgOpen Access
Petunia Ap2-like Genes and Their Role in Flower and Seed Development
Author(s) -
Tamara Maes,
Nancy Van de Steene,
Jan Zethof,
Mansour Karimi,
Mariëlla D’hauw,
Gwenny Mares,
Marc Van Montagu,
Tom Gerats
Publication year - 2001
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.13.2.229
Subject(s) - biology , petunia , perianth , homeotic gene , arabidopsis , genetics , mutant , gene , complementation , ectopic expression , phenotype , botany , stamen , pollen
We have isolated three Apetala2 (Ap2)-like genes from petunia and studied their expression patterns by in situ hybridization. PhAp2A has a high sequence similarity to the A function gene Ap2 from Arabidopsis and a similar expression pattern during flower development, suggesting that they are cognate orthologs. PhAp2B and PhAp2C encode for AP2-like proteins that belong to a different subgroup of the AP2 family of transcription factors and exhibit divergent, nearly complementary expression patterns during flower development compared with PhAp2A. In contrast, all three PhAp2 genes are strongly expressed in endosperm. The phenotype of the petunia A-type mutant blind cannot be attributed to mutations in the petunia Ap2 homologs identified in this study, and reverse genetics strategies applied to identify phap2a mutants indicate that PhAp2A might not be essential for normal perianth development in petunia. Nevertheless, we show that PhAp2A is capable of restoring the homeotic transformations observed in flowers and seed of the ap2-1 mutant of Arabidopsis. Although the interspecific complementation proves that PhAp2A encodes a genuine Ap2 ortholog from petunia, additional factors may be involved in the control of perianth identity in this species.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom