Ca2+-Stimulated Exocytosis in Maize Coleoptile Cells
Author(s) -
JensUwe Sutter,
Ulrike Homann,
Gerhard Thiel
Publication year - 2000
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.12.7.1127
Subject(s) - coleoptile , exocytosis , endocytosis , protoplast , biophysics , cytoplasm , vesicle , chemistry , membrane , analytical chemistry (journal) , biology , biochemistry , chromatography , cell
Changes in membrane capacitance (C(m)) after photolysis of the caged Ca(2)+ compound dimethoxynitrophenamine were studied in protoplasts from maize coleoptiles. Changes in C(m) values resulting from increased concentrations of free Ca(2)+ in the cytoplasm ([Ca(2)+](cyt)) were interpreted as representing changes in [Ca(2)+](cyt)-sensitive exocytosis and endocytosis. A continuous increase in [Ca(2)+](cyt) resulted in a sigmoidal increase in C(m) values with a half-maximal concentration at approximately 1 microM. The steep increase in C(m) values was followed by a variable slow phase in changing C(m) values. When [Ca(2)+](cyt) increased at a rate of 0.6 micromol L(-)(1) sec(-)(1), the initial steep increase in C(m) values lasted approximately 5 to 10 sec. During this time, protoplasts increased in surface area by approximately 2.5%. The biphasic dynamics of [Ca(2)+](cyt)-stimulated increases in C(m) values can be described by a kinetic model containing two pools of vesicles with two [Ca(2)+](cyt)-sensitive steps in the exocytotic pathway.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom