Determining the Physical Limits of the Brassica S Locus by Recombinational Analysis
Author(s) -
Amy Casselman,
Julia Vrebalov,
Joann A. Conner,
Anu Singhal,
James J. Giovani,
Mikhail E. Nasrallah,
June B. Nasrallah
Publication year - 2000
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.12.1.23
Subject(s) - locus (genetics) , biology , genetics , haplotype , recombination , gene , breakpoint , genetic linkage , gene mapping , genetic recombination , genotype , chromosome
A genetic analysis was performed to study the frequency of recombination for intervals across the Brassica S locus region. No recombination was observed between the S locus glycoprotein gene and the S receptor kinase gene in the segregating populations that we analyzed. However, a number of recombination breakpoints in regions flanking these genes were identified, allowing the construction of an integrated genetic and physical map of the genomic region encompassing one S haplotype. We identified, based on the pollination phenotype of plants homozygous for recombinant S haplotypes, a 50-kb region that encompasses all specificity functions in the S haplotype that we analyzed. Mechanisms that might operate to preserve the tight linkage of self-incompatibility specificity genes within the S locus complex are discussed in light of the relatively uniform recombination frequencies that we observed across the S locus region and of the structural heteromorphisms that characterize different S haplotypes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom