The CLAVATA1 Receptor-like Kinase Requires CLAVATA3 for Its Assembly into a Signaling Complex That Includes KAPP and a Rho-Related Protein
Author(s) -
Amy E. Trotochaud,
Tong Hao,
Guang Wu,
Zhenbiao Yang,
Steven E. Clark
Publication year - 1999
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.11.3.393
Subject(s) - gtpase , biology , microbiology and biotechnology , arabidopsis , mirroring , signal transduction , mutant , biochemistry , gene , communication , sociology
The CLAVATA1 (CLV1) and CLAVATA3 (CLV3) genes are required to maintain the balance between cell proliferation and organ formation at the Arabidopsis shoot and flower meristems. CLV1 encodes a receptor-like protein kinase. We have found that CLV1 is present in two protein complexes in vivo. One is approximately 185 kD, and the other is approximately 450 kD. In each complex, CLV1 is part of a disulfide-linked multimer of approximately 185 kD. The 450-kD complex contains the protein phosphatase KAPP, which is a negative regulator of CLV1 signaling, and a Rho GTPase-related protein. In clv1 and clv3 mutants, CLV1 is found primarily in the 185-kD complex. We propose that CLV1 is present as an inactive disulfide-linked heterodimer and that CLV3 functions to promote the assembly of the active 450-kD complex, which then relays signal transduction through a Rho GTPase.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom