z-logo
open-access-imgOpen Access
A Mutation in the pale aleurone color1 Gene Identifies a Novel Regulator of the Maize Anthocyanin Pathway
Author(s) -
David A. Selinger,
Vicki L. Chandler
Publication year - 1999
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.11.1.5
Subject(s) - biology , aleurone , gene , regulator gene , mutant , genetics , reporter gene , structural gene , allele , gene expression , regulator , regulation of gene expression , anthocyanin , mutation , botany
By screening for new seed color mutations, we have identified a new gene, pale aleurone color1 (pac1), which when mutated causes a reduction in anthocyanin pigmentation. The pac1 gene is not allelic to any known anthocyanin biosynthetic or regulatory gene. The pac1-ref allele is recessive, nonlethal, and only reduces pigment in kernels, not in vegetative tissues. Genetic and molecular evidence shows that the pac1-ref allele reduces pigmentation by reducing RNA levels of the biosynthetic genes in the pathway. The mutant does not reduce the RNA levels of either of the two regulatory genes, b and c1. Introduction of an anthocyanin structural gene promoter (a1) driving a reporter gene into maize aleurones shows that pac1-ref kernels have reduced expression resulting from the action of the a1 promoter. Introduction of the reporter gene with constructs that express the regulatory genes b and c1 or the phlobaphene pathway regulator p shows that this reduction in a1-driven expression occurs in both the presence and absence of these regulators. Our results imply that pac1 is required for either b/c1 or p activation of anthocyanin biosynthetic gene expression and that pac1 acts independently of these regulatory genes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom