Arabidopsis bZIP Protein HY5 Directly Interacts with Light-Responsive Promoters in Mediating Light Control of Gene Expression
Author(s) -
Sudip Chattopadhyay,
LayHong Ang,
Pilar Herrera Puente,
XingWang Deng,
Ning Wei
Publication year - 1998
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.10.5.673
Subject(s) - promoter , arabidopsis , biology , photomorphogenesis , bzip domain , transcription factor , phytochrome , genetics , gene , mutant , regulation of gene expression , transcription (linguistics) , leucine zipper , microbiology and biotechnology , gene expression , botany , linguistics , red light , philosophy
The Arabidopsis HY5 gene has been defined genetically as a positive regulator of photomorphogenesis and recently has been shown to encode a basic leucine zipper type of transcription factor. Here, we report that HY5 is constitutively nuclear localized and is involved in light regulation of transcriptional activity of the promoters containing the G-box, a well-characterized light-responsive element (LRE). In vitro DNA binding studies suggested that HY5 can bind specifically to the G-box DNA sequences but not to any of the other LREs present in the light-responsive promoters examined. High-irradiance light activation of two synthetic promoters containing either the consensus G-box alone or the G-box combined with the GATA motif (another LRE) and the native Arabidopsis ribulose bisphosphate carboxylase small subunit gene RBCS-1A promoter, which has an essential copy of the G-box, was significantly compromised in the hy5 mutant. The hy5 mutation's effect on the high-irradiance light activation of gene expression was observed in both photosynthetic and nonphotosynthetic tissues. Furthermore, the characteristic phytochrome-mediated red light- and far-red light-reversible low-fluence induction of the G-box-containing promoters was diminished specifically in hy5 plants. These results suggest that HY5 may interact directly with the G-box in the promoters of light-inducible genes to mediate light-controlled transcriptional activity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom