Light Regulation of Fed-1 mRNA Requires an Element in the 5′ Untranslated Region and Correlates with Differential Polyribosome Association
Author(s) -
Lynn F. Dickey,
Marie E. Petracek,
Tuyen T. L. Nguyen,
Eric R. Hansen,
William F. Thompson
Publication year - 1998
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.10.3.475
Subject(s) - polysome , biology , three prime untranslated region , messenger rna , untranslated region , differential (mechanical device) , association (psychology) , genetics , physics , rna , gene , ribosome , thermodynamics , philosophy , epistemology
Light regulation of Fed-1 mRNA abundance in the leaves of green plants is primarily a post-transcriptional process. Previously, we have shown that the Fed-1 mRNA light response requires an open reading frame, indicating that the light regulation of the mRNA depends on its concurrent translation. We now show that light-induced increases in Fed-1 mRNA abundance are associated with increases in polyribosome association that require both a functional AUG and a normal Fed-1 translational start context. We also present evidence that light regulation of Fed-1 mRNA levels requires more than efficient translation per se. Substitution of the efficiently translated tobacco mosaic virus Omega 5' untranslated region resulted in a loss of Fed-1 light regulation. In addition, we identified a CAT T repeat element located near the 5' terminus of the Fed-1 5' untranslated region that is essential for light regulation. We introduced two different mutations in the CAT T repeat element, but only one of these substitutions blocked the normal light effect on polyribosome association, whereas both altered dark-induced Fed-1 mRNA disappearance. The element may thus be important for Fed-1 mRNA stability rather than polyribosome loading. We propose a model in which Fed-1 mRNA is relatively stable when it is associated with polyribosomes in illuminated plants but in darkness is not polyribosome associated and is thus rapidly degraded by a process involving the CAT T repeat element.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom