Involvement of Maize Dof Zinc Finger Proteins in Tissue-Specific and Light-Regulated Gene Expression
Author(s) -
Shuichi Yanagisawa,
Jen Sheen
Publication year - 1998
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.10.1.75
Subject(s) - biology , repressor , zinc finger , promoter , gene expression , transactivation , gene , regulation of gene expression , transcription factor , activator (genetics) , transcription (linguistics) , microbiology and biotechnology , dna binding protein , genetics , linguistics , philosophy
Dof is a novel family of plant proteins that share a unique and highly conserved DNA binding domain with one C2-C2 zinc finger motif. Although multiple Dof proteins associated with diverse gene promoters have recently been identified in a variety of plants, their physiological functions and regulation remain elusive. In maize, Dof1 (MNB1a) is constitutively expressed in leaves, stems, and roots, whereas the closely related Dof2 is expressed mainly in stems and roots. Here, by using a maize leaf protoplast transient assay, we show that Dof1 is a transcriptional activator, whereas Dof2 can act as a transcriptional repressor. Thus, differential expression of Dof1 and Dof2 may permit leaf-specific gene expression. Interestingly, in vivo analyses showed that although DNA binding activity of Dof1 is regulated by light-dependent development, its transactivation activity and nuclear localization are not. Moreover, in vivo transcription and in vitro electrophoretic mobility shift assays revealed that Dof1 can interact specifically with the maize C4 phosphoenolpyruvate carboxylase gene promoter and enhance its promoter activity, which displays a light-regulated expression pattern matching Dof1 activity. We propose that the evolutionarily conserved Dof proteins can function as transcriptional activators or repressors of tissue-specific and light-regulated gene expression in plants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom