z-logo
open-access-imgOpen Access
Sieve Tubes in Action
Author(s) -
Michael Knoblauch,
Aart J. E. van Bel
Publication year - 1998
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.10.1.35
Subject(s) - phloem , sieve (category theory) , sieve tube element , biology , biophysics , confocal , lumen (anatomy) , ultrastructure , anatomy , electron microscope , confocal microscopy , microbiology and biotechnology , botany , optics , physics , mathematics , combinatorics
A method was designed for in vivo observation of sieve element/companion complexes by using confocal laser scanning microscopy. A leaf attached to an intact fava bean plant was mounted upside down on the stage of a confocal microscope. Two shallow paradermal cortical cuts were made in the major vein. The basal cortical window allowed us to observe the phloem intact. The apical window at 3 cm from the site of observation was used to apply phloem-mobile fluorochromes, which identified living sieve elements at the observation site. In intact sieve tubes, the sieve plates did not present a barrier to mass flow, because the translocation of fluorochromes appeared to be unhindered. Two major occlusion mechanisms were distinguished. In response to intense laser light, the parietal proteins detached from the plasma membrane and formed a network of minute strands and clustered material that aggregated and pressed against the sieve plate. In response to mechanical damage, the evenly distributed P plastids exploded, giving rise to the formation of a massive plug against the sieve plate. In case of mechanical damage, the parietal proteins transformed into elastic threads (strands) that extended throughout the sieve element lumen. Our observations cover the phenomena encountered in previous microscopic and electron microscopic studies and provide a temporal disentanglement of the events giving rise to the confusing mass of structures observed thus far.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom