z-logo
open-access-imgOpen Access
Deletion Mutagenesis of the Cytochrome b559 Protein Inactivates the Reaction Center of Photosystem II.
Author(s) -
Himadri B. Pakrasi,
Bruce A. Diner,
JGK. Williams,
C. J. Arntzen
Publication year - 1989
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.1.6.591
Subject(s) - photosystem ii , photosynthetic reaction centre , cytochrome b6f complex , biology , photosystem i , mutant , thylakoid , cytochrome , synechocystis , p700 , mutagenesis , biochemistry , photochemistry , photosynthesis , chemistry , chloroplast , gene , enzyme
In green plant-like photosynthesis, oxygen evolution is catalyzed by a thylakoid membrane-bound protein complex, photosystem II. Cytochrome b559, a protein component of the reaction center of this complex, is absent in a genetically engineered mutant of the cyanobacterium, Synechocystis 6803 [Pakrasi, H.B., Williams, J.G.K., and Arntzen, C.J. (1988). EMBO J. 7, 325-332]. In this mutant, the genes psbE and psbF, encoding cytochrome b559, were deleted by targeted mutagenesis. Two other protein components, D1 and D2 of the photosystem II reaction center, are also absent in this mutant. However, two chlorophyll-binding proteins, CP47 and CP43, as well as a manganese-stabilizing extrinsic protein component of photosystem II are stably assembled in the thylakoids of this mutant. Thus, this deletion mutation destabilizes the reaction center of photosystem II only. The mutant also lacks a fluorescence maximum peak at 695 nm (at 77 K) even though the CP47 protein, considered to be the origin of this fluorescence peak, is present in this mutant. We propose that the fluorescence at 695 nm originates from an interaction between the reaction center of photosystem II and CP47. The deletion mutant shows the absence of variable fluorescence at room temperature, indicating that its photosystem II complex is photochemically inactive. Also, photoreduction of QA, the primary acceptor quinone in photosystem II, could not be detected in the mutant. We conclude that cytochrome b559 plays at least an essential structural role in the reaction center of photosystem II.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom