z-logo
open-access-imgOpen Access
Functional Dissection of a Rice Dr1/DrAp1 Transcriptional Repression Complex
Author(s) -
Wen Song,
Harry Solimeo,
Ross Rupert,
Narendra Singh Yadav,
Qun Zhu
Publication year - 2002
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.010320
Subject(s) - corepressor , repressor , psychological repression , biology , genetics , microbiology and biotechnology , gene , transcription factor , gene expression
We characterized rice cDNA sequences for OsDr1 and OsDrAp1, which encode structural homologs of the eukaryotic general repressors Dr1 and DrAp1, respectively. OsDr1 and OsDrAp1 are nuclear proteins that interact with each other and with the TATA binding protein/DNA complex. In vitro and in vivo functional analyses showed that OsDrAp1 functions as a repressor, unlike its role in other eukaryotic systems, in which DrAp1 is a corepressor. OsDr1 and OsDrAp1 functioned together as a much stronger repressor than either one alone. Functional dissections revealed that the N-terminal histone-fold domains of OsDr1 and OsDrAp1 were necessary and sufficient for their repression and protein-protein interaction with each other. The unique glutamine- and proline-rich domain of OsDr1 had no repression activity. The basic amino acid-rich region and an arginine and glycine repeat domain of OsDrAp1 enhanced its repression activity. Thus, although OsDr1 and OsDrAp1 function as repressors, the functions of the two components are reversed compared with those of their nonplant counterparts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom