Light Control of Arabidopsis Development Entails Coordinated Regulation of Genome Expression and Cellular Pathways
Author(s) -
Ligeng Ma,
Jinming Li,
LiJia Qu,
Janet Hager,
Zhangliang Chen,
Hongyu Zhao,
Xing Wang Deng
Publication year - 2001
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.010229
Subject(s) - biology , arabidopsis , microbiology and biotechnology , plant development , genome , computational biology , regulation of gene expression , gene expression , genetics , gene , mutant
An expressed sequence tag-based microarray was used to profile genome expression underlying light control of Arabidopsis development. Qualitatively similar gene expression profiles were observed among seedlings grown in different light qualities, including far-red, red, and blue light, which are mediated primarily by phytochrome A, phytochrome B, and the cryptochromes, respectively. Furthermore, light/dark transitions also triggered similar differential genome expression profiles. Most light treatments also resulted in distinct expression profiles in small fractions of the expressed sequence tags examined. The similarly regulated genes in all light conditions were estimated to account for approximately one-third of the genome, with three-fifths upregulated and two-fifths downregulated by light. Analysis of those light-regulated genes revealed more than 26 cellular pathways that are regulated coordinately by light. Thus, light controls Arabidopsis development through coordinately regulating metabolic and regulatory pathways.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom