z-logo
open-access-imgOpen Access
Involvement of the Vacuoles of the Endodermis in the Early Process of Shoot Gravitropism in Arabidopsis
Author(s) -
Miyo Terao Morita,
T. KATO,
Kiyoshi Nagafusa,
Chieko Saito,
Takashi Ueda,
Akihiko Nakano,
Masao Tasaka
Publication year - 2002
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.010216
Subject(s) - endodermis , amyloplast , gravitropism , biology , vacuole , arabidopsis , microbiology and biotechnology , organelle , mutant , botany , plastid , cytoplasm , biochemistry , gene , chloroplast
The endodermal cells of the shoot are thought to be the gravity-sensing cells in Arabidopsis. The amyloplasts in the endodermis that sediment in the direction of gravity may act as statoliths. Endodermis-specific expression of SGR2 and ZIG using the SCR promoter could complement the abnormal shoot gravitropism of the sgr2 and zig mutants, respectively. The abnormalities in amyloplast sedimentation observed in both mutants recovered simultaneously. These results indicate that both genes in the endodermal cell layer are crucial for shoot gravitropism. ZIG encodes AtVTI11, which is a SNARE involved in vesicle transport to the vacuole. The fusion protein of SGR2 and green fluorescent protein localized to the vacuole and small organelles. These observations indicate that ZIG and SGR2 are involved in the formation and function of the vacuole, a notion supported by the results of subcellular analysis of the sgr2 and zig mutants with electron microscopy. These results strongly suggest that the vacuole participates in the early events of gravitropism and that SGR2 and ZIG functions are involved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom