Maize ABI4 Binds Coupling Element1 in Abscisic Acid and Sugar Response Genes
Author(s) -
Xiping Niu,
Tim Helentjaris,
Nicholas J. Bate
Publication year - 2002
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.003400
Subject(s) - abscisic acid , biology , gene , mutant , transcription factor , arabidopsis , promoter , transcription (linguistics) , microbiology and biotechnology , gene expression , biochemistry , linguistics , philosophy
Significant progress has been made in elucidating the mechanism of abscisic acid (ABA)-regulated gene expression, including the characterization of an ABA-responsive element (ABRE), which is regulated by basic domain/Leu zipper transcription factors. In addition to the ABRE, a coupling element (CE1) has been demonstrated to be involved in ABA-induced expression. However, a trans factor that interacts with CE1 has yet to be characterized. We report the isolation of a seed-specific maize ABI4 homolog and demonstrate, using a PCR-based in vitro selection procedure, that the maize ABI4 protein binds to the CE-1 like sequence CACCG. Using electrophoretic mobility shift assays, we demonstrate that recombinant ZmABI4 protein binds to the CE1 element in a number of ABA-related genes. ZmABI4 also binds to the promoter of the sugar-responsive ADH1 gene, demonstrating the ability of this protein to regulate both ABA- and sugar-regulated pathways. ZmABI4 complements Arabidopsis ABI4 function, because abi4 mutant plants transformed with the ZmABI4 gene have an ABA- and sugar-sensitive phenotype. Identification of the maize ABI4 ortholog and the demonstration of its binding to a known ABA response element provide a link between ABA-mediated kernel development and the regulation of ABA response genes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom