z-logo
open-access-imgOpen Access
Elicitor-Activated Phospholipase A2 Generates Lysophosphatidylcholines That Mobilize the Vacuolar H+ Pool for pH Signaling via the Activation of Na+-Dependent Proton Fluxes
Author(s) -
Katrin Viehweger,
Batsuch Dordschbal,
Werner Roos
Publication year - 2002
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.002329
Subject(s) - antiporter , chemistry , ion transporter , symporter , biophysics , biochemistry , phospholipase c , elicitor , phospholipase , intracellular , protonophore , lysophosphatidylcholine , vacuole , membrane potential , cytoplasm , membrane , signal transduction , transporter , biology , enzyme , phosphatidylcholine , gene , phospholipid
The elicitation of phytoalexin biosynthesis in cultured cells of California poppy involves a shift of cytoplasmic pH via the transient efflux of vacuolar protons. Intracellular effectors of vacuolar proton transport were identified by a novel in situ approach based on the selective permeabilization of the plasma membrane for molecules of < or = 10 kD. Subsequent fluorescence imaging of the vacuolar pH correctly reported experimental changes of activity of the tonoplast proton transporters. Lysophosphatidylcholine (LPC) caused a transient increase of the vacuolar pH by increasing the Na(+) sensitivity of a Na(+)-dependent proton efflux that was inhibited by amiloride. In intact cells, yeast elicitor activated phospholipase A(2), as demonstrated by the formation of LPC from fluorescent substrate analogs, and caused a transient increase of endogenous LPC, as determined by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. It is suggested that LPC generated by phospholipase A(2) at the plasma membrane transduces the elicitor-triggered signal into the activation of a tonoplast H(+)/Na(+) antiporter.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom