z-logo
open-access-imgOpen Access
Mehler-Peroxidase Reaction Mediates Zeaxanthin Formation and Zeaxanthin-Related Fluorescence Quenching in Intact Chloroplasts
Author(s) -
Christian Neubauer,
Harry Y. Yamamoto
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.99.4.1354
Subject(s) - zeaxanthin , fluorescence , chloroplast , quenching (fluorescence) , peroxidase , chemistry , photochemistry , biophysics , biochemistry , biology , lutein , enzyme , carotenoid , physics , gene , optics
Induction of zeaxanthin formation and the associated nonphotochemical quenching in iodoacetamide-treated, non-CO(2)-fixing intact chloroplasts of Lactuca sativa L. cv Romaine is reported. The electron transport needed to generate the required DeltapH for zeaxanthin formation and nonphotochemical quenching are ascribed to the Mehler-ascorbate peroxidase reaction. KCN, an inhibitor of ascorbate peroxidase, significantly affected these activities without affecting linear electron transport to methyl viologen or violaxanthin deepoxidase activity. At 1 millimolar KCN, zeaxanthin formation and DeltapH were inhibited 60 and 55%, respectively, whereas ascorbate peroxidase activity was inhibited almost totally. The KCN-resistant activity, which apparently was due to electron transport mediated by the Mehler reaction alone, however, was insufficient to support a high level of nonphotochemical quenching. We suggest that in vivo, as CO(2) fixation becomes limiting, the Mehler-peroxidase reaction protects photosystem II against the excess light by supporting the electron transport needed for zeaxanthin-dependent nonphotochemical quenching and concomitantly scavenging H(2)O(2). Ascorbate is essential for this process to occur.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom