z-logo
open-access-imgOpen Access
Light Moderates the Induction of Phosphoenolpyruvate Carboxylase by NaCl and Abscisic Acid in Mesembryanthemum crystallinum
Author(s) -
Elizabeth F. McElwain,
Hans J. Bohnert,
John C. Thomas
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.99.3.1261
Subject(s) - mesembryanthemum crystallinum , crassulacean acid metabolism , phosphoenolpyruvate carboxylase , abscisic acid , phosphoenolpyruvate carboxykinase , pyruvate carboxylase , biology , biochemistry , light intensity , halophyte , photosynthesis , enzyme , salinity , ecology , physics , optics , gene
In Mesembryanthemum crystallinum, phosphoenolpyruvate carboxylase is synthesized de novo in response to osmotic stress, as part of the switch from C(3)-photosynthesis to Crassulacean acid metabolism. To better understand the environmental signals involved in this pathway, we have investigated the effects of light on the induced expression of phosphoenolpyruvate carboxylase mRNA and protein in response to stress by 400 millimolar NaCl or 10 micromolar abscisic acid in hydroponically grown plants. When plants were grown in high-intensity fluorescent or incandescent light (850 microeinsteins per square meter per second), NaCl and abscisic acid induced approximately an eightfold accumulation of phosphoenolpyruvate carboxylase mRNA when compared to untreated controls. Levels of phosphoenolpyruvate carboxylase protein were high in these abscisic acid- and NaCl-treated plants, and detectable in the unstressed control. Growth in high-intensity incandescent (red) light resulted in approximately twofold higher levels of phosphoenolpyruvate carboxylase mRNA in the untreated plants when compared to control plants grown in high-intensity fluorescent light. In low light (300 microeinsteins per square meter per second fluorescent), only NaCl induced mRNA levels significantly above the untreated controls. Low light grown abscisic acid- and NaCl-treated plants contained a small amount of phosphoenolpyruvate carboxylase protein, whereas the (untreated) control plants did not contain detectable amounts of phosphoenolpyruvate carboxylase. Environmental stimuli, such as light and osmotic stress, exert a combined effect on gene expression in this facultative halophyte.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom