z-logo
open-access-imgOpen Access
Biosynthesis and Secretion of Cryptogein, a Protein Elicitor Secreted by Phytophthora cryptogea
Author(s) -
Thérèse TercéLaforgue,
JeanClaude Huet,
Jean-Claude ill
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.98.3.936
Subject(s) - elicitor , nicotiana tabacum , biology , phytophthora nicotianae , phytophthora , mycelium , biochemistry , secretion , microbiology and biotechnology , botany , enzyme , gene
The phytopathogenic fungi Phytophthora subspecies elicit hypersensitive-like necroses on their nonhost tobacco (Nicotiana tabacum), with the exception of the tobacco pathogen Phytophthora nicotianae. In culture, these fungi-except P. nicotianae-secrete proteins, called elicitins, that cause these remote leaf necroses and are responsible for the incompatible reaction. These proteins protect tobacco against invasion by the agent of the tobacco black shank, P. nicotianae, which is unable to produce such an elicitor. Cryptogein, secreted by Phytophthora cryptogea, has been purified, sequenced, and characterized as an elicitin, a novel family of 10 kilodalton holoproteins. In the present paper, we examined the secretion and biosynthesis of this protein elicitor from P. cryptogea culture. Results showed that the secretion of cryptogein began later than its synthesis and stopped earlier, simultaneously with mycelium growth, when the nitrogen source in the culture medium was nearly exhausted. Electrophoretic patterns of total protein from mycelium extracts and N-terminal sequence analysis showed that cryptogein accumulated in the mycelium in its mature form. The comparison of the immunoselected in vitro translation products with (35)S in vivo-labeled cryptogein showed that cryptogein was synthesized as a preprotein with a signal peptide removed cotranslationally before the secretion into the culture medium. Immunoselected in vitro-synthesized products were subjected to radiosequencing to clearly determine the N-terminal position and the size (20 amino acids) of the signal peptide. Cryptogein did not undergo any other posttranslational modification.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom