z-logo
open-access-imgOpen Access
Plasma Membrane Ca-ATPase of Radish Seedlings
Author(s) -
Antonella Carnelli,
Maria Ida De Michelis,
Franca RasiCaldogno
Publication year - 1992
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.98.3.1196
Subject(s) - chemistry , egta , ionophore , vanadate , atpase , raphanus , membrane , enzyme , substrate (aquarium) , biochemistry , calcium , chromatography , biology , organic chemistry , ecology , botany
In this work, we exploited the capability of the plasma membrane Ca-ATPase to utilize ITP as a substrate to study its characteristics in plasma membrane vesicles purified from radish (Raphanus sativus L.) seedlings. The majority of the ITPase activity of plasma membrane was Ca(2+)-dependent. The Ca(2+)-dependent ITPase activity was Mg(2+)-dependent and was stimulated by the calcium ionophore A23187. It was inhibited by erythrosin B (concentration giving 50% inhibition, 50 nanomolar) and by vanadate (concentration giving 50% inhibition, 3 micromolar) and displayed a broad pH optimum around pH 7.2 to 7.5. Both the hydrolytic and the transport activity of the plasma membrane Ca-ATPase were half-saturated by Ca(2+) in the micromolar concentration range. No major effect of EGTA on the saturation kinetics of the enzyme was observed. The affinity of the plasma membrane Ca-ATPase for Ca(2+) was about fourfold higher at pH 7.5 than at pH 6.9. The Ca(2+)-dependent ITPase activity was stimulated about twofold by polyoxyethylene 20 cetyl ether, although it was inhibited by Triton X-100 and by lysolecithin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom