z-logo
open-access-imgOpen Access
Phosphorus Nutrition Influence on Leaf Senescence in Soybean
Author(s) -
Steven J. CraftsBrandner
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.98.3.1128
Subject(s) - senescence , chlorophyll , rubisco , phosphorus , biology , nutrient , sowing , horticulture , photosynthesis , agronomy , botany , chemistry , ecology , organic chemistry , microbiology and biotechnology
Remobilization of mineral nutrients from leaves to reproductive structures is a possible regulatory factor in leaf senescence. The relationship between P remobilization from leaves of soybean (Glycine max [L.] Merr. cv McCall) during reproductive development and leaf senescence was determined by utilizing soil P treatments that supplied deficient, optimum, and supraoptimum soil P levels. The soil P treatments simulated field conditions, being initiated at the time of planting with no subsequent addition or removal of P. It was hypothesized that P deficiency would accelerate leaf senescence and that supraoptimum P nutrition would delay the timing or rate of leaf senescence relative to plants grown with optimum P. Supraoptimum soil P led to a two- to fourfold increase in leaf P concentration compared with optimum P, and during senescence there was no net P remobilization from leaves for this treatment. Leaf P concentration was similar for plants grown at optimum or deficient soil P, and there was significant net P remobilization from leaves of both treatments in one of the two experiments. As indicated by changes in leaf N, carbon dioxide exchange rate, ribulose 1,5-bisphosphate carboxylase/oxygenase activity, and chlorophyll concentration, leaf senescence patterns were similar for all soil P treatments. Thus, it can be concluded that leaf senescence was not affected by either P deficiency or enhanced leaf P concentration resulting from supraoptimum soil P. The results suggest that P nutrition in general, and specifically P remobilization from leaves, does not exert any regulatory control on the process of leaf senescence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here