
Phosphorus Nutrition Influence on Leaf Senescence in Soybean
Author(s) -
Steven J. CraftsBrandner
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.98.3.1128
Subject(s) - senescence , chlorophyll , rubisco , phosphorus , biology , nutrient , sowing , horticulture , photosynthesis , agronomy , botany , chemistry , ecology , organic chemistry , microbiology and biotechnology
Remobilization of mineral nutrients from leaves to reproductive structures is a possible regulatory factor in leaf senescence. The relationship between P remobilization from leaves of soybean (Glycine max [L.] Merr. cv McCall) during reproductive development and leaf senescence was determined by utilizing soil P treatments that supplied deficient, optimum, and supraoptimum soil P levels. The soil P treatments simulated field conditions, being initiated at the time of planting with no subsequent addition or removal of P. It was hypothesized that P deficiency would accelerate leaf senescence and that supraoptimum P nutrition would delay the timing or rate of leaf senescence relative to plants grown with optimum P. Supraoptimum soil P led to a two- to fourfold increase in leaf P concentration compared with optimum P, and during senescence there was no net P remobilization from leaves for this treatment. Leaf P concentration was similar for plants grown at optimum or deficient soil P, and there was significant net P remobilization from leaves of both treatments in one of the two experiments. As indicated by changes in leaf N, carbon dioxide exchange rate, ribulose 1,5-bisphosphate carboxylase/oxygenase activity, and chlorophyll concentration, leaf senescence patterns were similar for all soil P treatments. Thus, it can be concluded that leaf senescence was not affected by either P deficiency or enhanced leaf P concentration resulting from supraoptimum soil P. The results suggest that P nutrition in general, and specifically P remobilization from leaves, does not exert any regulatory control on the process of leaf senescence.