z-logo
open-access-imgOpen Access
Role of Cysteine in Activation and Allosteric Regulation of Maize Phosphoenolpyruvate Carboxylase
Author(s) -
Thierry Chardot,
Randolph T. Wedding
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.98.2.780
Subject(s) - dtnb , phosphoenolpyruvate carboxylase , dithiothreitol , phosphoenolpyruvate carboxykinase , chemistry , substrate (aquarium) , cysteine , allosteric regulation , pyruvate carboxylase , biochemistry , divalent , enzyme , molar concentration , active site , stereochemistry , biology , glutathione , ecology , organic chemistry
The effect of 5-5'-dithiobis-2-nitrobenzoate (DTNB) on the kinetic parameters and structure of phosphoenolpyruvate carboxylase purified from maize (Zea mays L.) has been studied. The V(max) is found to be independent of the presence of this thiol reagent. The K(m) is increased upon oxidation of cysteines by DTNB. At a substrate concentration higher than K(m) (3.1 millimolar Mgphosphoenolpyruvate), a significant reversible decrease of the activity is observed. Malate has little effect in preventing the modification of these cysteines. The V type inhibition by malate was also studied at a saturating phosphoenolpyruvate level (9.3 millimolar Mgphosphoenolpyruvate). In the presence of 50 micromolar DTNB, up to 60% inhibition is caused by 15 millimolar malate; however, in the presence of both 50 micromolar DTNB and 50 millimolar dithiothreitol (DTT) this inhibition is reduced to 20%. The presence of DTT alone increases the size of the phosphoenolpyruvate carboxylase molecule as determined by light scattering. The activity at nonsaturating substrate concentration is increased by 36% in the presence of DTT. The oligomerization equilibrium between the dimer and the tetrameric form of the enzyme is affected by cysteine. The K(m) for the substrate, the sensitivity toward malate, and the size of the enzyme are found to be modified upon incubation in the presence of DTT.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom