z-logo
open-access-imgOpen Access
Variability in Proline-Accumulating Ability of Barley (Hordeum vulgare L.) Cultivars Induced by Vapor Pressure Deficit
Author(s) -
Bodapati P. Naidu,
D. Aspinall,
L. G. Paleg
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.98.2.716
Subject(s) - proline , hordeum vulgare , cultivar , vapour pressure deficit , seedling , agronomy , poaceae , biology , horticulture , water potential , osmotic pressure , chemistry , botany , soil water , transpiration , amino acid , ecology , photosynthesis , biochemistry
This work was undertaken in an effort to reconcile the conflicting proline-accumulating responses of the barley (Hordeum vulgare L.) cultivars, Excelsior and Proctor, reported by Singh et al. (1972) and Hanson et al. (1976). It deals with the effects of different vapor pressure deficits (VPD) during growth and subsequent drought stress on several barley cultivars. A higher VPD (1.2 kilopascals) during Clipper seedling growth resulted in higher solute-accumulating ability, seemingly independently of leaf water potential, than a lower VPD (0.12 kilopascals). The higher VPD during stress also resulted in higher solute contents, and this response may be more closely related to leaf water potential. When the responses of Excelsior and Proctor were examined in detail, it was found that the relative proline-accumulating ability of the two cultivars was dependent upon the VPD under which they were grown. At low VPD, Proctor accumulated significantly more proline than did Excelsior; whereas at higher VPD, Excelsior accumulated more proline than did Proctor. The crossover occurred at a VPD of about 0.72 kilopascals. This reversal of cultivar response was enhanced by multiplying seed under the two VPD extremes. Glycinebetaine accumulation did not demonstrate the crossover effect, although the concentration of this compound in all cultivars also depended on the VPD prevailing during growth and/or stress. Solute levels, in general, were more closely related to the decrease in relative water content than to a decrease in leaf water potential. It is concluded that the conflicting proline-accumulating responses of Excelsior and Proctor could be explained by these findings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here