Changes in Esterification of the Uronic Acid Groups of Cell Wall Polysaccharides during Elongation of Maize Coleoptiles
Author(s) -
Jongbum Kim,
Nicholas C. Carpita
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.98.2.646
Subject(s) - coleoptile , elongation , uronic acid , polysaccharide , cell wall , chemistry , biochemistry , polymer , organic chemistry , materials science , metallurgy , ultimate tensile strength
Cell walls of grasses have two major polysaccharides that contain uronic acids, the hemicellulosic glucuronoarabinoxylans and the galactosyluronic acid-rich pectins. A technique whereby esterified uronic acid carboxyl groups are reduced selectively to yield their respective 6,6-dideuterio neutral sugars was used to determine the extent of esterification and changes in esterification of these two uronic acids during elongation of maize (Zea mays L.) coleoptiles. The glucosyluronic acids of glucuronoarabinoxylans did not appear to be esterified at any time during coleoptile elongation. The galactosyluronic acids of embryonal coleoptiles were about 65% esterified, but this proportion increased to nearly 80% during the rapid elongation phase before returning to about 60% at the end of elongation. Methyl esters accounted for about two-thirds of the total esterified galacturonic acid in cell walls of unexpanded coleoptiles. The proportion of methyl esters decreased throughout elongation and did not account for the increase in the proportion of esterified galactosyluronic acid units during growth. The results indicate that the galactosyluronic acid units of grass pectic polysaccharides may be converted to other kinds of esters or form ester-like chemical interactions during expansion of the cell wall. Accumulation of novel esters or ester-like interactions is coincident with covalent attachment of polymers containing galactosyluronic acid units to the cell wall.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom