Carbon Oxysulfide Inhibition of the CO2-Concentrating Process of Unicellular Green Algae
Author(s) -
Arun Goyal,
Yoshihiro Shiraiwa,
N. E. Tolbert
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.98.2.578
Subject(s) - carbonic anhydrase , photosynthesis , total inorganic carbon , chemistry , carbon fixation , scenedesmus , algae , hydrolysis , green algae , carbon dioxide , nuclear chemistry , biochemistry , inorganic chemistry , enzyme , botany , organic chemistry , biology
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O(2) evolution, dissolved inorganic carbon accumulation, and photosynthetic CO(2) fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO(2)-concentrating process. This COS inhibition can be attributed to inhibition of external HCO(3) (-) conversion to CO(2) and OH(-) by the carbonic anhydrase component of an active CO(2) pump. At a low pH of 5 to 6, COS stimulated O(2) evolution during photosynthesis by algae with low CO(2) in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO(2). Although COS had less effect on HCO(3) (-) accumulation at pH 9 by a HCO(3) (-) pump in Scenedesmus, COS reduced O(2) evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO(2) and H(2)S, its inhibition of the CO(2) pump activity and photosynthesis is not accurate, when measured by O(2) evolution, by NaH(14)CO(3) accumulation, or by (14)CO(2) fixation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom