Solute Accumulation and Compartmentation during the Cold Acclimation of Puma Rye
Author(s) -
Karen L. Koster,
Daniel V. Lynch
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.98.1.108
Subject(s) - raffinose , secale , sucrose , monosaccharide , acclimatization , sugar , dry weight , chemistry , botany , osmotic pressure , biology , food science , zoology , biochemistry
During cold acclimation of Puma rye (Secale cereale L. cv Puma), the intracellular osmotic potential nearly doubles. During this period, the accumulation of glycinebetaine, proline, and soluble sugars was monitored. The amount of glycinebetaine increased from 290 to 1300 micrograms per gram fresh weight during the 4-week acclimation period. Proline content did not change during the first 3 weeks of acclimation but then increased from 27 to 580 micrograms per gram fresh weight during the next 3 weeks. The total soluble sugar content more than doubled by the second week of cold acclimation, increasing from 11 to 26 milligrams per gram fresh weight. Most of this increase can be attributed to the accumulation of sucrose and raffinose, whose levels increased from 2.4 and 0 to 11 and 5 milligrams per gram fresh weight, respectively. The content of monosaccharides, predominantly glucose, remained at a constant 10 milligrams per gram fresh weight throughout the acclimation period. A comparison of the sugar content of protoplasts versus vacuoles isolated from cold-acclimated leaves revealed that the extravacuolar volume contained monosaccharides, sucrose, and raffinose. Thus, the increased amounts of sucrose and raffinose that occur during cold acclimation are present in compartments external to the vacuole and may contribute to cryoprotection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom