Biochemical Plant Responses to Ozone
Author(s) -
Detlef Rosemann,
Werner Heller,
Heinrich Sandermann
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.97.4.1280
Subject(s) - chalcone synthase , phenylalanine ammonia lyase , chemistry , biosynthesis , ozone , biochemistry , enzyme , atp synthase , enzyme assay , botany , biology , peroxidase , organic chemistry
Formation of the stilbenes pinosylvin and pinosylvin 3-methyl ether, as well as the activity of the biosynthetic enzyme stilbene synthase (pinosylvin-forming), were induced several hundred- to thousandfold in primary needles of 6-week-old pine (Pinus sylvestris L.) seedlings upon exposure to a single pulse of ozone of at least 0.15 microliters per liter. The seedlings required 4 hours of exposure as a minimum for the induction of stilbene biosynthesis when exposed to 0.2 microliters per liter ozone. Both stilbene synthase activity and stilbene accumulation increased with the duration of ozone treatment. The activity of phenylalanine ammonia-lyase and the activity of chalcone synthase, a key enzyme of the flavonoid pathway that uses the same substrates as stilbene synthase, were also stimulated about twofold by ozone. Stilbene biosynthesis appears to represent the first example of a dose-dependent biochemical response to ozone in a conifer species and may serve as a useful biomarker to study stress impacts on pine trees.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom