Induction by Electric Currents of Ethylene Biosynthesis in Cucumber (Cucumis sativus L.) Fruit
Author(s) -
Akitsugu Inaba,
Jun Gao,
Reinosuke Nakamura
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.97.3.1161
Subject(s) - ethylene , cucumis , aminooxyacetic acid , salicylic acid , chemistry , atp synthase , biosynthesis , molar concentration , ethylene glycol , enzyme , biochemistry , biophysics , horticulture , biology , organic chemistry , catalysis
The effects of an electric current on ethylene biosynthesis were investigated in cucumber (Cucumis sativus L.) fruit that were producing almost no ethylene. Direct currents at 0.5 to 3.0 milliamperes induced much ethylene synthesis, with a rapid continuous increase in the rate, which reached a peak within 5 to 6 hours and then decreased. The rate of production was greater with a stronger current. Ethylene production was not observed after the use of a sine-wave alternating current (60 hertz) at 3 milliamperes, the magnitude at which a direct current had the greatest effect. The activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ethylene forming enzyme (EFE) increased before the rise in ethylene production. ACC synthase and EFE were activated sixfold and fourfold, respectively, by 2 hours. The concentration of ACC increased linearly up to 6 hours and then decreased. Ethylene induction by an electric current was suppressed almost completely by the infiltration of the cucumbers with 5 millimolar aminooxyacetic acid, an inhibitor of ACC synthase, and was also suppressed 70% by 5 millimolar salicylic acid, an inhibitor of EFE. The results indicate that the ethylene induced by the direct current was synthesized via the ACC-ethylene pathway as a result of electrical stress, a new kind of stress to be identified.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom