z-logo
open-access-imgOpen Access
The 32-Kilodalton Vegetative Storage Protein of Salix microstachya Turz
Author(s) -
Suzanne Wetzel,
John S. Greenwood
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.97.2.771
Subject(s) - storage protein , asparagine , polyacrylamide gel electrophoresis , biochemistry , glutamine , isoelectric focusing , performic acid , amino acid , chemistry , gel electrophoresis , biology , enzyme , gene
A 32-kilodalton vegetative storage protein, found in Salix microstachya Turz. bark during the overwintering period, was purified and characterized using several polyacrylamide gel electrophoretic procedures. Solubility characteristics and amino acid analyses were also performed. The protein is water soluble, is glycosylated, has no disulfide-bonded subunits, but is composed of a family of isoelectric isomers. The majority of these isomers are basic. Characteristic of storage proteins, the protein is rich in glutamine/glutamate and asparagine/aspartate (28%), the basic nature of the isomers indicating that most of these amino acid residues are in the amide form. The protein was purified using preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and antibodies raised in chickens. Immunoblot analysis suggested an annual cyclic nature of the accumulation and mobilization of this vegetative storage protein. Immunologically, it is related to a similar molecular weight protein found in the bark of Populus deltoides Marsh. but not to any overwintering storage proteins of the other hardwoods tested. Indirect immunolocalization revealed that the protein was sequestered in protein-storage vacuoles in parenchymatous cells of the inner bark tissues of Salix during the winter months.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom