Morphological Responses of Wheat to Changes in Phytochrome Photoequilibrium
Author(s) -
Charles D. Barnes,
Bruce Bugbee
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.97.1.359
Subject(s) - dry weight , photosynthesis , chemistry , sodium , lamina , halide , botany , horticulture , poaceae , phytochrome , zoology , biology , inorganic chemistry , red light , organic chemistry
Wheat plants (Triticum aestivum L.) were grown at the same photosynthetic photon flux (PPF), 200 micromoles per square meter per second, but with phytochrome photoequilibrium (phi) values of 0.81, 0.55, and 0.33. Plants grown at phi values of 0.55 and 0.33 tillered 43 and 56%, less compared with plants grown at phi of 0.81. Main culm development (Haun stage) was slightly more advanced at lower values of phi, and leaf sheaths, but not leaf lamina, were longer at lower phi. Dry-mass accumulation was not affected by different levels of phi. Three levels of PPF (100, 200, and 400 micromoles per square meter per second) and two lamp types, metal halide and high pressure sodium, were also tested. Higher levels of PPF resulted in more dry mass, more tillering, and a more advanced Haun stage. There was no difference in plant dry mass or development under metal halide versus high pressure sodium lamps, except for total leaf length, which was greater under high pressure sodium lamps (49.5 versus 44.9 centimeters, P < 0.01).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom