Maturation Proteins Associated with Desiccation Tolerance in Soybean
Author(s) -
Sheila A. Blackman,
Scott H. Wettlaufer,
Ralph L. Obendorf,
A. C. Leopold
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.96.3.868
Subject(s) - desiccation , desiccation tolerance , imbibition , abscisic acid , biology , germination , storage protein , botany , biochemistry , gene
A set of proteins that accumulates late in embryogenesis (Lea proteins) has been hypothesized to have a role in protecting the mature seed against desiccation damage. A possible correlation between their presence and the desiccation tolerant state in soybean seeds (Glycine max L. Chippewa) was tested. Proteins that showed the same temporal pattern of expression as that reported for Lea proteins were identified in the axes of soybean. They were distinct from the known storage proteins and were resistant to heat coagulation. The level of these "maturation" proteins was closely correlated with desiccation tolerance both in the naturally developing and in the germinating seed: increasing at 44 days after flowering, when desiccation tolerance was achieved, and decreasing after 18 hours of imbibition, when desiccation tolerance was lost. During imbibition, 100 micromolar abscisic acid or Polyethylene glycol-6000 (-0.6 megapascals) delayed disappearance of the maturation proteins, loss of desiccation tolerance, and germination. During maturation, desiccation tolerance was prematurely induced when excised seeds were dried slowly but not when seeds were held for an equivalent time at high relative humidity. In contrast, maturation proteins were induced under both conditions. We conclude that maturation proteins may contribute to desiccation tolerance of soybean seeds, though they may not be sufficient to induce tolerance by themselves.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom