z-logo
open-access-imgOpen Access
Ethylene Promotes Elongation Growth and Auxin Promotes Radial Growth in Ranunculus sceleratus Petioles
Author(s) -
M.J.M. Smulders,
Roger F. Horton
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.96.3.806
Subject(s) - elongation , auxin , abscisic acid , gibberellic acid , ethylene , methyl jasmonate , petiole (insect anatomy) , gibberellin , biology , botany , cytokinin , jasmonate , chemistry , biophysics , biochemistry , arabidopsis , mutant , materials science , hymenoptera , germination , ultimate tensile strength , metallurgy , gene , catalysis
Submergence induces elongation in the petioles of Ranunculus sceleratus L., after a rise in endogenous ethylene levels in the tissue. Petioles of isolated leaves also elongate 100% in 24 hours when treated with ethylene gas, without a change in the radius. Application of silver thiosulfate, aminoethoxyvinylglycine (AVG), abscisic acid (ABA), or methyl jasmonate inhibits this elongation response. Gibberellic acid treatment promotes ethylene-induced elongation, without an effect on the radius. Indoelastic acid (IAA) induces radial growth in the petioles, irrespective of the presence or absence of added ethylene. High concentrations of IAA will also induce elongation growth, but this is largely due to auxin-induced ethylene synthesis; treatment with silver thiosulfate, AVG, ABA, or methyl jasmonate inhibit this auxin-promoted elongation growth. However, the radial growth induced by IAA is not affected by gibberellic acid, and not specifically inhibited by ABA, methyl jasmonate, silver thiosulfate, or AVG. These results support the idea that petiole cell elongation during "accommodation growth" can be separated from radial expansion. The radial expansion may well be regulated by IAA. However, effects of high levels of IAA are probably anomalous, since they do not mimic normal developmental patterns.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom