z-logo
open-access-imgOpen Access
Kinetic Characterization of Caffeoyl-Coenzyme A-Specific 3-O-Methyltransferase from Elicited Parsley Cell Suspensions
Author(s) -
Anne-Elisabeth Pakusch,
Ulrich Matern
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.96.1.327
Subject(s) - methyltransferase , enzyme , biochemistry , elicitor , phytophthora megasperma , biology , coenzyme a , in vivo , methionine , biosynthesis , transcription (linguistics) , enzyme assay , chemistry , methylation , dna , amino acid , genetics , linguistics , philosophy , reductase
The activity of caffeoyl-coenzyme A (CoA) 3-O-methyltransferase, an enzyme widely distributed in plants and involved in cell wall reinforcement in a disease resistance response, appears to be subject to a complex type of regulation in vivo. In cultured parsley (Petroselinum crispum) cells treated with an elicitor from Phytophthora megasperma f.sp. glycinea, the enzyme activity is rapidly induced by a transient increase in the rate of de novo transcription. Parsley caffeoyl-CoA-specific methyltransferase differs in several aspects from other plant O-methyltransferases but shows limited homology to bacterial adenine-specific DNA methyltransferases. Kinetic analysis revealed an Ordered Bi Bi mechanism for catalysis, with caffeoyl-CoA bound prior to S-adenosyl-l-methionine and feruloyl-CoA released last from the enzyme. The small inhibitory constant determined in vitro for feruloyl-CoA suggests that, in vivo, the enzyme activity is also under tight control by the steady-state product concentration in addition to the rate of transcription that becomes affected upon elicitor challenge.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom